
Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Lightweight Type-Like
Hoare-Separation Specs for Java

Tiago Vieira Correia dos Santos

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa

September 10, 2010

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 1 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Goals

Type systems are effective but not very precise, while program
logics tend to be very precise, but undecidable.
This work goals are:

Develop a lightweight specification language for Java, based
on propositional logic;
Extend the Java compiler, complementing type analysis with
program correctness verification according to its specification.

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 2 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Outline

1 Background
Formal Specification and Verification
Languages with program verification support

2 Lightweight Type-Like Hoare-Separation Specs for Java
Expected Results
Specification Language
Program Verification

3 Development
Implementation
Challenges
Future Work

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 3 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Formal Specification and Verification
Languages with program verification support

Formal Specification and Verification

The process of software validation is a difficult problem, benefiting
from the use of rigorous methods, preferably based on formalized
mathematical techniques (e.g. logic):

Improve specifications quality, removing ambiguities;
Detect errors in advance;
Correctness, equivalence, termination.

It is a research area for over 40 years and has seen a new impetus
recently.
Hoare marked the 40th anniversary of his article writing a new
article [Hoare 2009], which discusses the developments that have
occurred since that time, and what might still happen.

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 4 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Formal Specification and Verification
Languages with program verification support

Formal Specification and Verification

The use of formal methods is not fully accepted by software
developers:

Complexity Cost

It is necessary to address formal methods using lightweight
specifications.

Verification techniques grouped in:

Static Verification
Theorem Proving

Dynamic Verification
Code Coverage
Model Checking

This work focus is specification verification by static analysis, using
theorem proving technique.

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 5 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Formal Specification and Verification
Languages with program verification support

Verification Techniques

Hoare Logic
Flo67, Hoa69, Lam80

Separation Logic
Rey02, OHRY01, PB05

Weakest Precondition Calculus
Dij75, Rey02

Dynamic Logic
Bec01, BK07

Higher-order Logic
HJ00, JP01

Our approach focus on
Weakest Precondition
Calculus and is inspired by
Dual Intuitionistic Linear
Logic and Separation Logic

=

Dual Hoare-Separation Logic

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 6 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Formal Specification and Verification
Languages with program verification support

Verification Techniques

Hoare Logic
Flo67, Hoa69, Lam80

Separation Logic
Rey02, OHRY01, PB05

Weakest Precondition Calculus
Dij75, Rey02

Dynamic Logic
Bec01, BK07

Higher-order Logic
HJ00, JP01

Our approach focus on
Weakest Precondition
Calculus and is inspired by
Dual Intuitionistic Linear
Logic and Separation Logic

=

Dual Hoare-Separation Logic

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 6 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Formal Specification and Verification
Languages with program verification support

Languages with verification support

There are lots of tools that provide support for program verification:

ESC/Java2
JACK

KRAKATOA
LOOP

jStar
KeY
Forge

Languages have also been designed with support for program
verification:

Gypsy
Euclid

Eiffel
Spec#

SPARK
D

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 7 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Formal Specification and Verification
Languages with program verification support

Languages with verification support

Require user intervention (e.g KRAKATOA);
Don’t satisfy correctness and/or completeness (e.g
ESC/Java2, Forge);
Coverage language limitations;
Higher specification language expressiveness, but too complex.

Programmers:
Have little knowledge in logic areas;
Intend automatic processes, less complex and integrated into
program development.

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 8 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Lightweight Type-Like Hoare-Separation Specs for Java

In our approach:
Specification language similar to JML and Spec#’s but
lightweight, based on monadic propositional logic and handles
aliasing by separating pure from linear properties

No quantifiers
No reference to the value of an expression at its precondition
(old)

Verification based on weakest precondition calculus, executed
directly from Java syntactic constructs

Verification Conditions proved using a SMT-Solver

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 9 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Expected Results

Cover as much as possible the features of Java
Integrate verification in the compile process

Approach the checks carried out by type systems to the fully
formal logical checks.

Perform verification automatically without user interaction

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 10 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Dual Hoare-Separation Logic

ψ ::= φ+ ϕ (Dual Formula)
ϕ ::= ∅ | φ | φ ∗ ϕ (Linear Formula)
φ ::= (Classic Formula)

⊥ (Bottom)
| φ lc φ (Binary Formula)
| ¬φ (Negation)
| (φ) (Parenthesized Formula)
| P(t1, t2, · · · , tn) (Predicate Symbols)

lc ::= ∨ | ∧ | ⇒ | ⇔ (Logical Connectives)
t ::= (Terms)

c (Constants)
| x (Variables)
| f (t1, t2, · · · , tn) (Function Symbols)

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 11 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Dual Hoare-Separation Logic

ψ ::= φ+ ϕ (Dual Formula)
ϕ ::= ∅ | φ | φ ∗ ϕ (Linear Formula)
φ ::= (Classic Formula)

⊥ (Bottom)
| φ lc φ (Binary Formula)
| ¬φ (Negation)
| (φ) (Parenthesized Formula)
| P(t1, t2, · · · , tn) (Predicate Symbols)

lc ::= ∨ | ∧ | ⇒ | ⇔ (Logical Connectives)
t ::= (Terms)

c (Constants)
| x (Variables)
| f (t1, t2, · · · , tn) (Function Symbols)

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 11 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Dual Hoare-Separation Logic

ψ ::= φ+ ϕ (Dual Formula)
ϕ ::= ∅ | φ | φ ∗ ϕ (Linear Formula)
φ ::= (Classic Formula)

⊥ (Bottom)
| φ lc φ (Binary Formula)
| ¬φ (Negation)
| (φ) (Parenthesized Formula)
| P(t1, t2, · · · , tn) (Predicate Symbols)

lc ::= ∨ | ∧ | ⇒ | ⇔ (Logical Connectives)
t ::= (Terms)

c (Constants)
| x (Variables)
| f (t1, t2, · · · , tn) (Function Symbols)

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 11 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Assertions

D, I ::= CF + SLF (Dual Formula)

SLF ::= CF | CF * SLF (Sep. Formula)

CF ::= true | false | CF bop CF | !CF | b : S (Classic Formula)

bop ::= && | || | => | <=> (Logical Connectives)

b ::= fn | this | return | pn (Properties/States – Target)

S ::= true | false | pos | neg | zero | null | sn (Properties/States)

pn ∈ parameter names
fn ∈ field names
sn ∈ state names

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 12 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Programs

program ::= classDecl∗ (Program)
classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . (Class Member)

| field (Instance Variable Declaration)
| method (Method Declaration)
| constructor (Constructor Declaration)
| classSpec (Class Specification)

classSpec ::= (Class Specification)
define sn; (Abstract Definition)

| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn [= E]? ; (Instance Variable Declaration)
method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= public | static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

cn ∈ class names
sn ∈ state names
fn ∈ field names

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 13 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Programs

program ::= classDecl∗ (Program)
classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . (Class Member)

| field (Instance Variable Declaration)
| method (Method Declaration)
| constructor (Constructor Declaration)
| classSpec (Class Specification)

classSpec ::= (Class Specification)
define sn; (Abstract Definition)

| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn [= E]? ; (Instance Variable Declaration)
method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= public | static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

cn ∈ class names
sn ∈ state names
fn ∈ field names

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 13 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Programs

program ::= classDecl∗ (Program)
classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . (Class Member)

| field (Instance Variable Declaration)
| method (Method Declaration)
| constructor (Constructor Declaration)
| classSpec (Class Specification)

classSpec ::= (Class Specification)
define sn; (Abstract Definition)

| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn [= E]? ; (Instance Variable Declaration)
method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= public | static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

cn ∈ class names
sn ∈ state names
fn ∈ field names

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 13 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Programs

program ::= classDecl∗ (Program)
classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . (Class Member)

| field (Instance Variable Declaration)
| method (Method Declaration)
| constructor (Constructor Declaration)
| classSpec (Class Specification)

classSpec ::= (Class Specification)
define sn; (Abstract Definition)

| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn [= E]? ; (Instance Variable Declaration)
method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= public | static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

cn ∈ class names
sn ∈ state names
fn ∈ field names

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 13 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Programs

program ::= classDecl∗ (Program)
classDecl ::= class cn { classMember∗ } (Class Declaration)
classMember ::= . . . (Class Member)

| field (Instance Variable Declaration)
| method (Method Declaration)
| constructor (Constructor Declaration)
| classSpec (Class Specification)

classSpec ::= (Class Specification)
define sn; (Abstract Definition)

| define sn = D; (Concrete Definition)
| invariant D; (Class Invariant)

field ::= T fn [= E]? ; (Instance Variable Declaration)
method ::= modifier T mn(arg) spec { ST } (Method Declaration)
constructor ::= modifier cn(arg) spec { ST } (Constructor Declaration)
modifier ::= public | static | . . . | pure (Modifiers)
spec ::= (Procedure Specification)

requires D (Precondition)
| ensures D (Postcondition)

ST ::= ... (Statement)
| assume D (Assume)
| sassert D (Static Assert)

cn ∈ class names
sn ∈ state names
fn ∈ field names

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 13 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example (1)

1 p u b l i c c l a s s F i l e {
2 d e f i n e open ;
3
4 p u b l i c F i l e ()
5 e n s u r e s + ! open
6 {
7 assume + ! open ;
8 }
9

10 p u b l i c v o i d open ()
11 r e q u i r e s + ! open
12 e n s u r e s + open
13 {
14 assume + open ;
15 }
16
17 p u b l i c v o i d w r i t e (i n t b)
18 r e q u i r e s + open
19 e n s u r e s + open
20 { }
21
22 p u b l i c i n t r ead ()
23 r e q u i r e s + open
24 e n s u r e s + open
25 { r e t u r n 0 ; }

25 . . .
26
27 p u b l i c v o i d c l o s e ()
28 r e q u i r e s + open
29 e n s u r e s + ! open
30 {
31 assume + ! open ;
32 }
33
34 p u b l i c pu re v o i d no th i ng () {}
35
36 p u b l i c s t a t i c v o i d main (
37 S t r i n g [] a r g s) {
38 F i l e f = new F i l e () ;
39 f . no th i ng () ;
40 f . open () ;
41 f . no th i ng () ;
42 f . no th i ng () ;
43 f . c l o s e () ;
44 f . no th i ng () ;
45 f . open () ;
46 // f . open () ; // Wrong
47 f . c l o s e () ;
48 // f . c l o s e () ; // Wrong
49 }
50 }

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 14 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example (2)

1 p u b l i c c l a s s Stack {
2
3 p r i v a t e Entry head ;
4
5 c l a s s Entry {
6 p u b l i c Entry (i n t x)
7 r e q u i r e s x : pos
8 { t h i s (x , n u l l) ; }
9

10 p u b l i c Entry (i n t x , Ent ry n)
11 r e q u i r e s x : pos
12 {
13 t h i s . x = x ;
14 t h i s . nex t = n ;
15 }
16
17 p r i v a t e i n t x ;
18 i n v a r i a n t x : pos ;
19 p r i v a t e Entry nex t ;
20
21 p u b l i c Entry getNext ()
22 { r e t u r n next ; }
23
24 p u b l i c i n t getE lement ()
25 e n s u r e s r e t u r n : pos
26 { r e t u r n x ; }
27 }

27 . . .
28
29 p u b l i c Stack ()
30 { head = n u l l ; }
31
32 p u b l i c v o i d push (i n t i)
33 r e q u i r e s i : pos
34 e n s u r e s + ! head : n u l l
35 { head = new Entry (i , head) ; }
36
37 p u b l i c i n t pop ()
38 r e q u i r e s + ! head : n u l l
39 e n s u r e s r e t u r n : pos
40 {
41 i n t r e s = head . getE lement () ;
42 head = head . getNext () ;
43 r e t u r n r e s ;
44 }
45 }

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 15 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Verification Approach

Approach to program verification:
Apply weakest precondition calculus to every method and
constructor body;
Rewrite properties and Java conditions in propositional logic
predicates;
Submit formulas to a SMT-Solver for validity proof.

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 16 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

WP Calculus

Weakest Precondition
Being P a program with postcondition R, then the weakest
precondition is represented as:

wp(P,R)

[while loop]

(I ∧ ¬ε) ⇒ R (I ∧ ε) ⇒ wp (ST , I)

wp

(
while (ε)

invariant I
ST

,R

)
= I

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 17 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

WP Calculus

[pure call – pm/pr/po]

wp (x = k.mn(y, z),C + S)
= Ic [this/k] ⇒

k 6= null ∧ QmnA [this/k, p1/y]

∧ k 6= null
∧

RmnA [this/k, p1/y, return/f]

⇒ C [x/f]

+
 QmnB [this/k, p1/y, p2/z]

∧(
RmnB [this/k, p1/y, p2/z, return/f]⇒ S ↓ {k, x, z}[x/f]

)

∗
S − {k, x, z}

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 18 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

WP Calculus

[method call – lr/lo]

S ↓ {z\x} = ∅ true+ (k 6= null ∧ RmnB [this/k, p1/y , return/f])⇒ S ↓ {k, x , z}[x/f]

wp (x = k.mn(y , z),C + S) = Ic [this/k]⇒

 QmnA [this/k, p1/y]
∧

(RmnA [this/k, p1/y]⇒ C [x/f])

+

 k 6= null
∧

QmnB [this/k, p1/y , p2/z]

∗

S − {k, x , z}

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 19 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

1 c l a s s Math {
2 p ub l i c s t a t i c pure i n t abs (i n t x)
3 en su re s ! r e t u r n : neg
4 {
5 i f (x > 0) r e t u r n x ;
6 e l s e r e t u r n −x ;
7 }
8 }

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 20 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

wp
(

if (x > 0) return x ;
else return − x , !return : neg

)
=

[conditional]

wp
(

if (ε) ST1

else ST2
,C + S

)
= ε⇒ wp (ST1,C + S) ∧ ¬ε⇒ wp (ST2,C + S)

=

>(x , 0)⇒ wp
(
return x ,¬ <(return, 0) + ∅

)
∧

¬ >(x , 0)⇒ wp
(
return − x ,¬ <(return, 0) + ∅

) =

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

wp
(

if (x > 0) return x ;
else return − x , !return : neg

)
=

[conditional]

wp
(

if (ε) ST1

else ST2
,C + S

)
= ε⇒ wp (ST1,C + S) ∧ ¬ε⇒ wp (ST2,C + S)

=

>(x , 0)⇒ wp
(
return x ,¬ <(return, 0) + ∅

)
∧

¬ >(x , 0)⇒ wp
(
return − x ,¬ <(return, 0) + ∅

) =

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

wp
(

if (x > 0) return x ;
else return − x , !return : neg

)
=

[conditional]

wp
(

if (ε) ST1

else ST2
,C + S

)
= ε⇒ wp (ST1,C + S) ∧ ¬ε⇒ wp (ST2,C + S)

=

>(x , 0)⇒ wp
(
return x ,¬ <(return, 0) + ∅

)
∧

¬ >(x , 0)⇒ wp
(
return − x ,¬ <(return, 0) + ∅

) =

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

=

>(x , 0)⇒ wp
(
return x ,¬ <(return, 0) + ∅

)
∧

¬ >(x , 0)⇒ wp
(
return − x ,¬ <(return, 0) + ∅

) =

[pure return]

wp (return ε,C + S) = RmnA [return/ε] + RmnB [return/ε]

=

>(x , 0)⇒
(
¬ <(x , 0) + ∅

)
∧

¬ >(x , 0)⇒
(
¬ <(−x , 0) + ∅

) ≡ >(x , 0)⇒ ¬ <(x , 0)
∧

¬ >(x , 0)⇒ ¬ <(−x , 0)
+ ∅

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

=

>(x , 0)⇒ wp
(
return x ,¬ <(return, 0) + ∅

)
∧

¬ >(x , 0)⇒ wp
(
return − x ,¬ <(return, 0) + ∅

) =

[pure return]

wp (return ε,C + S) = RmnA [return/ε] + RmnB [return/ε]

=

>(x , 0)⇒
(
¬ <(x , 0) + ∅

)
∧

¬ >(x , 0)⇒
(
¬ <(−x , 0) + ∅

) ≡ >(x , 0)⇒ ¬ <(x , 0)
∧

¬ >(x , 0)⇒ ¬ <(−x , 0)
+ ∅

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

=

>(x , 0)⇒ wp
(
return x ,¬ <(return, 0) + ∅

)
∧

¬ >(x , 0)⇒ wp
(
return − x ,¬ <(return, 0) + ∅

) =

[pure return]

wp (return ε,C + S) = RmnA [return/ε] + RmnB [return/ε]

=

>(x , 0)⇒
(
¬ <(x , 0) + ∅

)
∧

¬ >(x , 0)⇒
(
¬ <(−x , 0) + ∅

) ≡ >(x , 0)⇒ ¬ <(x , 0)
∧

¬ >(x , 0)⇒ ¬ <(−x , 0)
+ ∅

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Expected Results
Specification Language
Program Verification

Example

Recall that the absolute value of a number is well specified iff:

{ } int abs(int x) { !return:neg }

Verification Condition Submitted to the SMT-Solver:

(>+ ∅)⇒

 >(x , 0)⇒ ¬ <(x , 0)
∧

¬ >(x , 0)⇒ ¬ <(−x , 0)
+ ∅

 ≡
≡ (>+ ∅)⇒ (>+ ∅) =

(> ⇒ >) + ∅ = >+ ∅

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 21 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Implementation
Challenges
Future Work

Implementation

The extension of the Java language is implemented using the
Polyglot framework, which implements an extensible compiler for
Java. [Nathaniel Nystrom, Michael Clarkson, and Andrew Myers]

SpecJava
Source
Code

SpecJava
AST

Java AST
+

Serialized
Type Information

Bytecode
+

Serialized
Type Information

SpecJava
Parser

Compiler
Passes

Code
Generation

Type Builder, Imports,
Type Checking, Exceptions

Checking, VC Generation, etc

http://www.cs.cornell.edu/Projects/polyglot/

http://pessoa.fct.unl.pt/tiago.santos/tools/specjava.zip

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 22 / 24

http://www.cs.cornell.edu/Projects/polyglot/
http://pessoa.fct.unl.pt/tiago.santos/tools/specjava.zip

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Implementation
Challenges
Future Work

Challenges

Some challenges of this work:
Extend WP calculus for the Java language
Solve aliasing problem
Completely define the specification language and its
integration in Polyglot
Integrate SMT-Solver in Polyglot

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 23 / 24

Goals
Outline

Background
Lightweight Type-Like Hoare-Separation Specs for Java

Development

Implementation
Challenges
Future Work

Future Work

Dual Logic is new
Requires a theoretical study

Extend WP Calculus
break statement
continue statement
Inheritance

Extend Specification Support
Interface Specification
Core Java Specification

Concurrency

SOFT-PT 2010 Tiago Vieira Correia dos Santos Lightweight Type-Like Hoare-Separation Specs ... 24 / 24

	Goals
	Outline
	Background
	Lightweight Type-Like Hoare-Separation Specs for Java
	Development

